感悟网 导航

义务教育阶段数学基本思想有哪些 义务教育阶段解决哪些知识点要涉及分类讨论数学思想

作者&投稿:睢疯 (若有异议请与网页底部的电邮联系)
小学数学课程标准中所说的基本思想指的是哪些?~

《数学课程标准》中所说的“数学的基本思想”主要指:数学(抽象)的思想、数学(推理)的思想、数学建模的思想。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。
总体目标通过义务教育阶段的数学学习,学生能:1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
小学数学新课程标准的特点:
数与代数现行大纲这部分内容主要侧重有关数、代数式、方程、函数的运算,《标准》对此作了较大地改革:1.重视数与符号意义以及对数的感受,体会数字用来表示和交流的作用。通过探索丰富的问题情景发展运算的含义,在保持基本笔算训练的前提下,强调能够根据题目条件寻求合理、简捷的运算途径和运算方法,加强估算,引进计算器,鼓励算法多样化。
2.对于应用问题:选材强调现实性、趣味性和可探索性;题材呈现形式多样化(表格、图形、漫画、对话、文字等);强调对信息材料的选择与判断(信息多余、信息不足);解决的策略多样化;问题答案可以不唯一;淡化人为编制的应用题类型及其解题分析。
3.使学生初步体会数学可以发现、描述、分析客观世界中多种多样的模式,把握事物的变化和事物间的关系;初步发展学生的符号意识,学会用符号表达现实问题中的一些基本关系,会初步进行符号运算。
4.体会方程和函数是刻划现实世界,有效地表示、处理、交流和传递信息的强有力工具,是探究事物好发展规律,预测事物发展的重要手段,重视对简单现实头问题的建模过程,学会选择有效的符号运算程序和方法解决问题,重视近似解法特别是图象解法。

分类讨论的数学思想在高中数学的各个模块的教学中,占有重要地位,也是近年来高考重点考查的热点问题之一。参数广泛地存在于中学数学的各类问题中,以命题的条件和结论的结构为标准,含参数的问题可分为两种类型,一种类型的问题是根据参数在允许值范围内的不同取值(或取值范围),去探求命题可能出现的结果,然后归纳出命题的结论;另一种类型的问题是给定命题的结论去探求参数的取值范围或参数应满足的条件。本文拟就第一类问题的解题思想方法――分类与讨论作一些探讨,不妥之处,敬请指正。
解决第一类型的参数问题,通常要用“分类讨论”的方法,即根据问题的条件和所涉及到的概念;运用的定理、公式、性质以及运算的需要,图形的位置等进行科学合理的分类,然后逐类分别加以讨论,探求出各自的结果,最后归纳出命题的结论,达到解决问题的目的。它实际上是一种化难为易。化繁为简的解题策略和方法。
一、科学合理的分类
把一个集合A分成若干个非空真子集Ai(i=1、2、3···n)(n≥2,n∈N),使集合A中的每一个元素属于且仅属于某一个子集。即
①A1∪A2∪A3∪···∪An=A
②Ai∩Aj=φ(i,j∈N,且i≠j)。
则称对集A进行了一次科学的分类(或称一次逻辑划分)
科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。
二、确定分类标准
在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种:
(1)根据数学概念来确定分类标准
例如:绝对值的定义是:
所以在解含有绝对值的不等式|logx|+|log (3-x)|≥1时,就必须根据确定logx ,log(3-x)正负的x值1和2将定义域(0,3)分成三个区间进行讨论,即0<x<1,1≤x<2,2≤x<3三种情形分类讨论。
例1,已知动点M到原点O的距离为m,到直线L:x=2的距离为n,且m+n=4
(1)求点M的轨迹方程。
(2)过原点O作倾斜角为α的直线与点M的轨迹曲线交于P,Q两点,求弦长|PQ|的最大值及对应的倾斜角α。
解:(1)设点M的坐标为(x,y),依题意可得:+= 4
根据绝对值的概念,轨迹方程取决于x>2还是x≤2,所以以2为标准进行分类讨论可
得轨迹方程为:y =
解(2)如图1,由于P,Q的位置变化,

弦长|PQ|的表达式不同,故必须分点P,Q都在曲线y2=4(x+1)以及一点在曲线y2=4(x+1)上而另一点在曲线y2=-12(x-3)上可求得:

从而知当或时,
(2)根据数学中的定理,公式和性质确定分类标准。
数学中的某些公式,定理,性质在不同条件下有不同的结论,在运用它们时,就要分类讨论,分类的依据是公式中的条件。
例如,对数函数y=logax的单调性是分0<a<1和a>1两种情况给出的,所以在解底数中含有字母的不等式;如logx>-1就应以底数x>1和0<x<1进行分类讨论,即:当x>1时,, 当0<x<1时,.
又如,等比数列前几项和公式是分别给出的:
所以在解这类问题时,如果q是可以变化的量,就要以q为标准进行分类讨论。
例2,设首项为1,公比为q的等比数列的前n项和为Sn,又设Tn=,n=1,2,···.求Tn
解:当q=1时,Sn=n,Tn=
当q≠1时,Sn=
综上所述,
(3)根据运算的需要确定分类标准。
例如:解不等式组
显然,应以3,4为标准将a分为1<a≤3,3<a≤4,a>4三种情况进行讨论。
例3,解关于x的不等式组
其中a>0且a≠1。
解,由于不等式中均含有参数a,其解的状况均取决于a>1还是a<1,所以1为标准进行分类,
(Ⅰ)当0<a<1时,可求得解为: ;
(Ⅱ)当a>1时,可解得:, 此时不等式组是否有解关键取决于 与2的大小关系,所以以 即a=3为标准进行第二次分类。
(1)当1<a≤3时解集为Φ
(2)当a>3时解集为
综上所述:当0<a<1时,原不等式解集为 (2, ;当1<a≤3时,解集为Φ;
当a>3时,解集为 (2, .
三、分类讨论的方法和步骤
(1)确定是否需要分类讨论以及需要讨论时的对象和它的取值范围;
(2)确定分类标准科学合理分类;
(3)逐类进行讨论得出各类结果;
(4)归纳各类结论。
例4,若函数f(x)=a+bcosx+csinx的图象经过点(0,1)和(,1)两点,且x∈[0,]时,|f(x)|≤2恒成立,试求a的取值范围。
解:由f(0)=a+b=1,f()=a+c=1,求得b=c=1-a
f(x)=a+(1-a)(sinx+cosx)=a+(1-a)sin(x+)

①当a≤1时,1≤f(x)≤a+(1-a)∵|f(x)|≤2∴只要a+(1-a)≤2解得a≥∴-≤a≤1;②当a>1时,a+(1-a)≤f(x)≤1,∴只要a+(1-a)≥-2,解得a≤4+3 , ∴1<a≤4+3,综合①,②知实数a的取值范围为[-,4+3]。
例5,已知函数f(x)=sim2x-asim2
试求以a表示f(x)的最大值b。
解:原函数化为f(x)=
令t=cosx,则-1≤t≤1
记g(t)=-(。t∈[-1,1]
因为二次函数g(t)的最大值的取得与二次函数y=g(t)的图象的顶点的横坐标相对于定义域[-1,1]的位置密切相关,所以以相对于区间[-1,1]的位置分三种情况讨论:
(1)当-1≤≤1,即-4≤a≤4时,b=g(t)max=, 此时t= ;
(2)当<-1, 即a<-4时,b=-a , 此时 t=
(3)当>1, 即a>4时,b=0, 此时, t=1
综上所述:b=
例6、等差数列{an}的公差d<0,Sn为前n项之和,若Sp=Sq,(p,q∈N,p≠q)试用d,p,q表示Sn的最大值。
略解:由Sp=Sq  p≠q可求得
∵d<0,∴a1>0,当且仅当 时Sn最大。
由an≥0 得n≤,由an+1≤0得,n≥
∴≤n≤,∵n∈N,∴要以是否为正整数即p+q是奇数还是偶数为标准分两类讨论。
(1)当p+q为偶数时n=,Sn最大且为(Sn)max=
(2)当p+q为奇数时,n=或n=, Sn最大,且为(Sn)max=
例7、(北京2011年高考理科18题)
已知函数。
(Ⅰ)求的单调区间;
(Ⅱ)若对于任意的,都有≤,求的取值范围。
解:(Ⅰ)
令,得.
当k>0时,的情况如下

x

()

(,k)

k



+

0



0

+







0




所以,的单调递减区间是()和;单高层区间是当k<0时,的情况如下

x

()

(,k)

k





0

+

0







0






所以,的单调递减区间是()和;单高层区间是
(Ⅱ)当k>0时,因为,所以不会有
当k<0时,由(Ⅰ)知在(0,+)上的最大值是
所以等价于
解得.
故当时,k的取值范围是
分类讨论的思想是一种重要的解题策略,对于培养学生思维的严密性,严谨性和灵活性以及提高学生分析问题和解决问题的能力无疑具有较大的帮助。然而并不是问题中一出现含参数问题就一定得分类讨论,如果能结合利用数形结合的思想,函数的思想等解题思想方法可避免或简化分类讨论,从而达到迅速、准确的解题效果。
例7、解关于x的不等式:≥a-x
略解:运用数形结合的思想解题如图:
在同一坐标系内作出y=和y=a-x的图象,以L1 , L2, L3在y轴上的截距作为分类标准,

知: 当a≤-1时; -1≤x≤3
当-1<a≤3时; ≤x≤3
当3<a1+2时;
当a>1+2时,不等式无解。
例8、实数k为何值时,方程kx2+2|x|+k=0有实数解?
略解:运用函数的思想解题:
由方程可得k=
因此方程有解时k的了值范围就是函数f(x)=的值域,显然-1≤f(x)≤0
故-1≤k≤0即为所求。
总之,在各个模块的教学中,逐步渗透用分类讨论等数学思想的去解决问题。分类讨论覆盖的知识点较多,有利于考查学生的知识面、分类思想方式多样,具有较高的逻辑性和较强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧,做到确定对象的全体,明确分类的标准,分层别类不重复、不遗漏地分析讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

1、对应思想
2、比较思想
3、假设思想
4、符号化思想
5、类比思想
6、转化思想
7、分类思想
8、集合思想
9、数形结合思想
10、统计思想
11、极限思想
12、代换思想
13、可逆思想
14、划归思想
15、数学建模思想。

《义务教育阶段数学基本思想有哪些》
答:1、对应思想 2、比较思想 3、假设思想 4、符号化思想 5、类比思想 6、转化思想 7、分类思想 8、集合思想 9、数形结合思想 10、统计思想 11、极限思想 12、代换思想 13、可逆思想 14、划归思想 15、数学建模思想。

《小学数学课程标准中所说的基本思想指的是哪些?》
答:《数学课程标准》中所说的“数学的基本思想”主要指:数学(抽象)的思想、数学(推理)的思想、数学建模的思想。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。总体目标通过义务教育阶段的数学学习,学生能:1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能...

《小学数学课程标准中所说的基本思想指的是哪些?》
答:数学推理的思想 :归纳的思想,演绎的思想,公理化思想,转换化归的思想,联想类比的思想,逐步逼近的思想,代换的思想,特殊与一般的思想,等等。数学建模的思想:简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,抽样统计的思想,等等。参考资料:《义务教育数学课程标准(2011版...

《义务教育数学课程的基本理念是什么》
答:五大核心理念:数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。课程内容要符合学生的认知规律,它不仅包括数学的结果,也包括数学结果的形成过程和蕴涵的数学思想方法。课程内容的选择要贴近学生的实际...

《2022版数学课程标准的基本理念是什么?》
答:2022版义务教育阶段数学课程标准的基本理念如下:一、“确立核心素养导向的课程目标”,强调“义务教育数学课程应使学生通过数学的学习,形成和发展面向未来社会和个人发展所需要的核心素养。核心素养是在数学学习过程中逐渐形成和发展的,不同学段发展水平不同,是制定课程目标的基本依据”。二、“设计体现结构...

《义务教育数学课程的基本理念有哪些?》
答:1、数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。2、课程内容要符合学生的认知规律,呈现螺旋上升的趋势,注重联系实际,注重过程与结果并重,注重培养学生的思维能力和创新精神。3、教学活动是...

《义务教育阶段数学课程的基本理念主要表现在哪些方面》
答:【答案】:义务教育阶段数学课程的基本理念主要表现在以下几个方面:课程内涵、课程内容的选择与呈现、学习评价、技术与课程。(1)课程内涵 数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育.不同的人在数学上得到不同的发展。(2)...

《新课程标准针对义务教育阶段的数学课程,提出了哪几个核心概念?》
答:新课程标准针对义务教育阶段的数学课程,提出了10个数学课程核心概念,分别是:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识。

《《义务教育数学课程标准》的基本理念有哪些》
答:一、数学课程要面向全体学生 义务教育是面向全体学生的教育,义务教育阶段的数学课程不能以培养数学家、培养少数精英为目的,而是要面向全体学生,使每一个学生都能得到一般性的发展.《标准》明确指出,“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的...

《在义务教育阶段,数学眼光主要表现为》
答:在义务教育阶段,数学思维主要表现为:(运算能力、推理意识或 推理能力)。在义务教育阶段,数学语言主要表现为:(数据意识或数据观念、 模型意识或模型观念、应用意识)。核心素养具有(整体性、一致性和阶段性),在不同阶段具有不同表现 1、用字母表示数字的思想,这是数学的基本思想之一。这一思想...

   

返回顶部
本页内容来自于网友发表,若有相关事宜请照下面的电邮联系
感悟网